Proton translocation and the respiratory nitrate reductase of Escherichia coli.

نویسندگان

  • P B Garland
  • J A Downie
  • B A Haddock
چکیده

Stoicheometries and rates of proton translocation associated with respiratory reduction of NO3- have been measured for spheroplasts of Escherichia coli grown anaerobically in the presence of NO3-. Observed stoicheiometries [leads to H+/NO3- ratio; P. Mitchell (1966) Chemiosmotic Coupling in Oxidative and Photosynthetic Phosphorylation, Glynn Research, Bodmin] were approx. 4 for L-malate oxidation and approx. 2 for succinate, D-lactate and glycerol oxidation. Measurements of the leads to H+/2e- ratio with formate as the reductant and oxygen or NO3- as the oxidant were complicated by pH changes associated with formate uptake and CO2 formation. Nevertheless, it was possible to conclude that the site of formate oxidation is on the inner aspect of the cytoplasmic membrane, that the leads to H+/O ratio for formate oxidation is approx. 4, and that the leads to H+/NO3- ratio is greater than 2. Measurements of the rate of NO3- penetration into osmotically sensitive spheroplasts demonstrated an electrogenic entry of NO3- anion. The permeability coefficient for nitrate entry at 30 degrees C was between 10(-9) and 10(-10) cm- s(-1). The calculated rate of nitrate entry at the concentration typically used for the assay of nitrate reductase (EC 1.7.99.4) activity was about 0.1% of that required to support the observed rate of nitrate reduction by reduced Benzyl Viologen. Measurements of the distribution of nitrate between the intracellular and extracellular spaces of a haem-less mutant, de-repressed for nitrate reductase but unable to reduce nitrate by the respiratory chain, showed that, irrespective of the presence or the absence of added glucose, nitrate was not concentrated intracellularly. Osmotic-swelling experiments showed that the rate of diffusion of azid anion across the cytoplasmic membrane is relatively low in comparison with the fast diffusion of hydrazoic acid. The inhibitory effect of azide on nitrate reductase was not altered by treatments that modify pH gradients across the cytoplasmic membrane. It is concluded that the nitrate-reducing azide-sensitive site of nitrate reductase is located on the outer aspect of the cytoplasmic membrane. The consequences of this location for mechanisms of proton translocation driven by nitrate reduction are discussed, and lead to the proposal that the nitrate reductase of the cytoplasmic membrane is vectorial, reducing nitrate on the outer aspect of the membrane with 2H+ and 2e- that have crossed from the inner aspect of the membrane.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electron-paramagnetic-resonance studies on the molybdenum of nitrate reductase from Escherichia coli K12.

Studies on the respiratory nitrate reductase (EC 1.7.99.4) from Escherichia coli K12 by electron-paramagnetic-resonance spectroscopy indicate that its molybdenum centre is comparable with that in other molybdenum-containing enzymes. Two Mo(V) signals may be observed; one shows interaction of Mo(V) with a proton exchangeable with the solvent and has: A (1H) 0.9-1.2mT; g1 = 1.999; g2=1.985; g3 = ...

متن کامل

Periplasmic nitrate reductase (NapABC enzyme) supports anaerobic respiration by Escherichia coli K-12.

Periplasmic nitrate reductase (NapABC enzyme) has been characterized from a variety of proteobacteria, especially Paracoccus pantotrophus. Whole-genome sequencing of Escherichia coli revealed the structural genes napFDAGHBC, which encode NapABC enzyme and associated electron transfer components. E. coli also expresses two membrane-bound proton-translocating nitrate reductases, encoded by the na...

متن کامل

A novel sec-independent periplasmic protein translocation pathway in Escherichia coli.

The trimethylamine N-oxide (TMAO) reductase of Escherichia coli is a soluble periplasmic molybdoenzyme. The precursor of this enzyme possesses a cleavable N-terminal signal sequence which contains a twin-arginine motif. By using various moa, mob and mod mutants defective in different steps of molybdocofactor biosynthesis, we demonstrate that acquisition of the molybdocofactor in the cytoplasm i...

متن کامل

Dynamic subcellular localization of a respiratory complex controls bacterial respiration

Respiration, an essential process for most organisms, has to optimally respond to changes in the metabolic demand or the environmental conditions. The branched character of their respiratory chains allows bacteria to do so by providing a great metabolic and regulatory flexibility. Here, we show that the native localization of the nitrate reductase, a major respiratory complex under anaerobiosis...

متن کامل

Immunochemical localization of nitrate reductase in Escherichia coli [proceedings].

The membrane-bound nitrate reductase from Escherichiu coli functions as the terminal enzyme of the respiratory chain of the organism when it is grown anaerobically in the presence of nitrate. The enzyme consists of two types of polypeptide chain, a and 8, of approx. mol.wts. 155000 and 65000 respectively (Enoch &Lester, 1975). In conjunction with cytochrome bN%6it constitutes a proton-transloca...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Biochemical journal

دوره 152 3  شماره 

صفحات  -

تاریخ انتشار 1975